

Bachelor of Science (B.Sc.) Semester—I (C.B.S.) Examination
CHEMISTRY
(Physical Chemistry)
Compulsory Paper—2

Time : Three Hours]

[Maximum Marks : 50]

N.B. :— (1) All **FIVE** questions are compulsory and carry equal marks.
(2) Write chemical equations and draw diagrams wherever necessary.

1. (A) State and deduce the following from kinetic gas equation :

(i) Avogadro's law and
(ii) Graham's law of diffusion.

5

(B) Define :

(i) Critical volume
(ii) Critical temperature and
(iii) Critical Pressure.

The critical temperature and critical pressure of chlorine are 419 K and 93.1 atmosphere respectively.
Calculate the van der Waal's constants for chlorine gas. 5

OR

(C) Discuss Maxwell-Boltzmann's distribution of molecular velocities. 2½
(D) Calculate the temperature at which RMS velocity of oxygen molecule will be equal to Hydrogen molecule at 20 K. 2½
(E) Give the explanation of deviation of real gases by means of van der Waal's equation of state. 2½
(F) Explain compressibility factor and Boyle temperature. 2½

2. (A) Derive Bragg's equation for diffraction of X-rays. The first order diffraction from a certain crystal is observed at an angle of 20.6° with X-rays of wavelength 22.91 nm. Calculate the interplanar spacing. 5

(B) State and explain :

- (i) Law of constancy of interfacial angles and
- (ii) Law of rationality of indices.

5

OR

(C) What are Miller indices ? The Weiss indices of a certain plane are $\frac{1}{2}, \frac{1}{3}$ and ∞ . Find Miller indices. 2½

(D) Draw (100), (110) and (111) planes of simple cubic crystal. 2½

(E) Discuss Laue's method for determination of crystal structure. 2½

(F) Why Bragg's method show that KCl is simple cubic though it is face centred cubic like NaCl ? 2½

3. (A) What are intermolecular forces ? Discuss the following intermolecular forces in liquids :

- (i) Dipole—induced dipole interactions and
- (ii) London forces.

5

(B) How surface tension of a liquid is determined by capillary rise method ? At what height will a liquid rise in a capillary tube having 0.1 mm diameter ?

(Density of liquid = $1.3 \times 10^3 \text{ kgm}^{-3}$

Surface tension of liquid = $6.5 \times 10^{-3} \text{ Nm}^{-1}$

Acceleration due to gravity = 9.8 ms^{-1}).

5

OR

(C) What are liquid crystals ? Discuss cholesteric liquid crystals. 2½

(D) How relative viscosity of a liquid is determined by Ostwald's viscometer ? 2½

(E) The molar refraction of acetic acid is $13.3 \times 10^{-6} \text{ m}^3 \text{ mol}^{-1}$ and its density is $1.046 \times 10^3 \text{ kgm}^{-3}$. Calculate refractive index of acetic acid. 2½

(F) What is parachor ? Discuss application of parachor in structure determination. 2½

4. (A) Give the assumptions and derive an expression for Langmuir adsorption isotherm. 5

(B) Write BET equation. How is it used in the determination of surface area of the absorbent ?

5

OR

(C) What are the important applications of adsorption ? 2½

(D) Explain with examples homogeneous and heterogeneous catalysis. 2½

(E) Explain auto catalysis with examples. 2½

(F) Write a note on enzyme catalysis. 2½

5. Attempt any **ten** questions of the following :

- (i) State any two postulates of Kinetic theory of gases.
- (ii) Define mean free path.
- (iii) Write van der Waal's equation of state for n moles of real gas.
- (iv) Define space lattice.
- (v) Identify the crystal structure with the dimensions of unit cell :
 $a = b = c$ and $\alpha = \beta = \gamma \neq 90^\circ$
- (vi) Draw unit cell of CsCl.
- (vii) Why the liquid drop is spherical ?
- (viii) What is intrinsic viscosity ?
- (ix) Define refractive index.
- (x) What are inhibitors ?
- (xi) Define the term chemical adsorption.
- (xii) Write Michaelis-Menten equation. $1 \times 10 = 10$